Skein theory for SU(n)-quantum invariants

نویسنده

  • Adam S. Sikora
چکیده

For any n ≥ 2 we define an isotopy invariant, 〈Γ〉n , for a certain set of n-valent ribbon graphs Γ in R, including all framed oriented links. We show that our bracket coincides with the Kauffman bracket for n = 2 and with the Kuperberg’s bracket for n = 3. Furthermore, we prove that for any n, our bracket of a link L is equal, up to normalization, to the SUn quantum invariant of L. We show a number of properties of our bracket extending those of the Kauffman’s and Kuperberg’s brackets, and we relate it to the bracket of Murakami-Ohtsuki-Yamada. Finally, on the basis of the skein relations satisfied by 〈·〉n , we define the SUn -skein module of any 3manifold M and we prove that it determines the SLn -character variety of π1(M). AMS Classification 57M27; 17B37

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Invariants of Links Satisfying Cubic Skein Relations

The aim of this paper is to define two link invariants satisfying cubic skein relations. In the hierarchy of polynomial invariants determined by explicit skein relations they are the next level of complexity after Jones, HOMFLY, Kauffman and Kuperberg’s G2 quantum invariants. Our method consists in the study of Markov traces on a suitable tower of quotients of cubic Hecke algebras extending Jon...

متن کامل

Mutants and SU(3)q invariants

Details of quantum knot invariant calculations using a specific SU(3)q –module are given which distinguish the Conway and Kinoshita– Teresaka pair of mutant knots. Features of Kuperberg’s skein-theoretic techniques for SU(3)q invariants in the context of mutant knots are also discussed. AMS Classification 57M25; 17B37, 22E47

متن کامل

Skein Theory and Witten-reshetikhin-turaev Invariants of Links in Lens Spaces

We study the behavior of the Witten-Reshetikhin-Turaev SU(2) invariants of an arbitrary link in L(p, q) as a function of the level r− 2. They are given by

متن کامل

Skein Construction of Idempotents in Birman-murakami-wenzl Algebras

We give skein theoretic formulas for minimal idempotents in the Birman-Murakami-Wenzl algebras. These formulas are then applied to derive various known results needed in the construction of quantum invariants and modular categories. In particular, an elementary proof of the Wenzl formula for quantum dimensions is given. This proof does not use the representation theory of quantum groups and the...

متن کامل

Skein-theoretical derivation of some formulas of Habiro

Abstract We use skein theory to compute the coefficients of certain power series considered by Habiro in his theory of sl2 invariants of integral homology 3-spheres. Habiro originally derived these formulas using the quantum group Uqsl2 . As an application, we give a formula for the colored Jones polynomial of twist knots, generalizing formulas of Habiro and Le for the trefoil and the figure ei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005